SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-89-12
31 October 1989

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202; and monitored by the Office of Naval
Research under contract number N0O0014-87-K-0745.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
31 OCT 1989 2. REPORT TYPE 31-10-1989 to 31-10-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Submicron Systems Ar chitectur e Project £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-89-12
31 October 1989

Reporting Period: 1 April 1989 — 31 October 1989
Principal Investigator: Charles L. Seitz

Faculty Investigators: K. Mani Chandy
Alain J. Martin
Charles L. Seitz
Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the seven-month
period, 1 April 1989 to 31 October 1989, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from

the Caltech Computer Science Library.
1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights
* Memoryless Mosaic functional on first silicon (sections 2.1 and 4.9).

¢ 192-node Symult Series 2010 multicomputer (section 2.2)

Program Composition (section 3.1)

Cantor for the Mosaic (section 3.2)

Testing the asynchronous microprocessor (section 4.1).

The limits of delay-insensitivity (section 4.2).

Self-timed mesh-routing chips operate at 65MB/s (section 4.7).

-1-

2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jakov Seizovie, Don Speck, Wen-King Su, Steve
Taylor, Tony Wittry

The Mosaic C is an experimental fine-grain multicomputer, currently in develop-
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a
three-dimensional mesh router, a packet interface, 16KB of RAM, and a ROM that
holds self-test and bootstrap code. These nodes are arrayed logically and phys-
ically in a three-dimensional mesh. We are working toward building a 16K-node
(82x32x16) Mosaic prototype, together with the system software and programming
tools required to develop application programs.

The Mosaic can be programmed using the same reactive-process model that
is used for the medium-grain multicomputers that our group has developed.
However, the small memory in each node dictates that programs be formulated
with concurrent processes that are quite small. The Cantor programming system
supports this style of reactive-process programming by a combination of language,
compiler, and runtime support. The programmer is responsible only for expressing
the computing problem as a concurrent program. The resources of the target
concurrent machine are managed entirely by the programming system.

The Mosaic project includes many subtasks, which are listed below together
with their current status:

Design, layout, and verification of the single-chip Mosaic node. The
Mosaic C chip with 16KB of memory is 9.0mmXx7.4mm in a 1.2um CMOS process,
and has 84 pads. Yield characterization indicates that a node with 16KB rather
than 8KB of primary memory will increase the chip fabrication cost by less than
30%. Doubling the primary memory at 1.3x the cost for the prototype is a good
tradeoff. Additional memory will be particularly helpful for a system that will
be used extensively for software development. A substantial economy has been
achieved by using TAB rather than conventional packages, so the total fabrication
budget has not changed from original estimates.

A “memoryless Mosaic” test chip containing the processor, packet interface,
router, clock driver, and central timing and memory arbitration was sent to MOSIS
on August 10th to be fabricated in the 1.6um SCMOS process. (The memory section
had been verified earlier.) These chips were returned from fabrication on October
12th, and have been subjected to preliminary tests. Although there are additional
tests to perform, this chip appears to operate completely correctly on first silicon,
with a yield of 47/50 in the preliminary screening. All processor instructions and the
router have been tested; the packet interface is now being tested. The test fixture
currently limits speed testing to a clock period of 37ns (27MHz). The chip operates
correctly with a clock period of 37ns, except for one case. When an incoming packet

-2

directs the router to switch the packet onto the next dimension, the minimum clock
period for correct operation is approximately 65ns. Depending on the nature of the

design error, this problem may require a design iteration on the memoryless Mosaic.
(See section 4.9 for additional details.)

Internal self-test and bootstrap code. Since the Mosaic C is a
programmable computing element, devoting a portion of the bootstrap ROM to
self-testing greatly simplifies the logistics of producing these chips in quantity.
The bootstrap and self-test code will be tested with EPROM connected to the
memoryless Mosaic elements. Additional tests to the channels, which must be
accomplished by the fabricator’s automatic test equipment, are being written.

Packaging. The packaging design is based on Tape Automated Bonding (TAB)
of the chips on small circuit boards. The manufacturing and replacement unit will
contain eight nodes in a logical 2x2x2 submesh. These modules have stacking
connectors that provide 160 pins on both the top and bottom, and are confined by
pressure between motherboards to provide a three-dimensional connection structure
that can be disassembled and reassembled for repair. We are currently evaluating
suitable connectors.

Cantor runtime system. A Cantor runtime system has been written in
Mosaic assembly code, and is now interfaced to the code produced by version 3.0
of the Cantor programming system. Research is underway on runtime algorithms
that allow the system to operate robustly in spite of fluctuations in local storage
demands. For example, if a local receive queue threatens to overflow, a part of the
receive queue is distributed to another node. (See also section 3.2.)

Cantor language, compiler, and application studies. We are now
experimenting with version 3.0 of the Cantor language and compiler, which was
developed by William C. Athas at the University of Texas at Austin.

Host interfaces and displays. The three-dimensional mesh structure of the
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate
and interact with computations within the Mosaic, we are designing interfaces

between the Mosaic message network and host computers, and between the message
network and displays.

A system that will serve both as a prototype of a host interface and as a software
development platform is based on eight memoryless Mosaic elements connected to
fast, two-ported, external memories. This workstation add-in board will provide
an interface that will allow the workstation to monitor the memories of the Mosaic
elements during program execution.

In order to provide a high-performance display capability for the Mosaic, we
have designed a system that uses one 32x32 plane of a Mosaic as a rendering engine
and frame buffer. A detailed design of the video output generator that attaches to
one edge of this 32x32 plane has been completed; construction awaits finalization
of packaging decisions.

-3-

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Seizovic, Craig Steele, Wen-
King Su

Symult Systems has delivered additional contributed equipment over the past seven
months, with the result that we are now operating a 192-node Symult Series
2010 multicomputer for applications and a 32-node Symult Series 2010 for system
development. Utilization of the 192-node system through the Caltech Concurrent
Supercomputer Facilities has been at a level of approximately 88% of the available
node-hours. These systems run very dependably, and have yet to exhibit a hardware
failure.

Copies of the Cosmic Environment system have been distributed on request to
20 additional sites during this period, bringing the total copies distributed directly
from the project to nearly 200.

We are implementing a new version of the Cosmic Environment host runtime
system, and adding numerous new features to the Reactive Kernel node operating
system. The new CE is based internally on reactive-process programming, and will
allow a more distributed management of a set of network-connected multicomputers.
The extended RK will support global operations across sets of cohort processes,
including barrier synchronization, sum, min, max, parallel prefix, and rank.
Another extension will be the support of distributed data structures, such as sets
and ordered sets. These new features will be implemented at the RK handler level,
where the message latency is only a fraction of that at the protected user level.
The implementation of these algorithms at the handler level permits global and
distributed-data-structure operations in times that do not greatly exceed those of
user-level operations dealing with single messages.

Our Caltech project continues to work closely with DARPA-supported Touch-
stone project at Intel Scientific Computers. Our contributions include the architec-
tural design, message-routing methods and chips, and system software. (See section
3.3 for a summary of the port of RK to the iPSC /2, and section 4.7 for a summary
of test results on mesh-routing chips.)

The Cosmic Cubes that were built in our project in 1983 continue to operate
reliably. No hard failures were recorded in this seven-month period. The two
original Cosmic Cubes have now logged 4.2 million node-hours with only four hard
failures; three of these were chip failures in nodes, and one a power-supply failure.

A node MTBF in excess of 1,000,000 hours is probable based on this reliability
experience.

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,
California).

-4-

3. Concurrent Computation

3.1 Program Composition

K. Mani Chandy, Steve Taylor

This research investigates the use of program composition as a method of
developing concurrent programs. The goal is to develop a theory, a notation,
and an implementation of program composition operators so that programs can
be developed by putting smaller programs together to get larger ones. The
compositional approach to programming was described in the previous semiannual
technical report. New components of this work are:

1. A primitive set of composition operators (and not merely sequential or
functional composition) has been implemented, and a proof theory has been
developed for this set of operators.

2. The researchers believe that in each application area there are a few problem-
solving paradigms or “templates,” and that, formally, these templates are

user-defined composition operators. Thus, the notation allows user-defined
composition operators.

3. The notation is intended to execute on both shared-memory and message-
passing concurrent computers, without modification. A fragment of the notation

has been implemented on the Connection Machine by Professor Rajive Bagrodia
at UCLA.

4. The theory incorporates functional programming ideas, and extends it to
problems that are not functional. (Most reactive systems are nondeterministic,
and nonfunctional.)

5. The researchers have been working with computational fluid dynamicists and
biologists to identify problem-solving paradigms in these disciplines, and to
evaluate whether the compositional approach is effective in these areas.

The theory of program composition has been developed, and a prototype
implementation in Strand has been completed. Discussions with Caltech faculty
in Applied Math and Biology have provided initial test cases. Discussions with
researchers at Aerospace Corporation have allowed an evaluation of program
composition for tracking and trajectory-computation applications, and have led to
initial joint research in these applications.

3.2 Cantor for the Mosaic
Nanette J. Boden, Chuck Seitz

With the Cantor version 3.0 compiler and interpreter in place, we are beginning to
translate a representative subset of our library of Cantor application programs into
the new version. The purpose of this exercise is twofold: We maintain a library of
programs for demonstrations, and we continue the process of evaluating the impact

-5

of new language features on application programming. The aspects of the Cantor
3.0 that have the most impact on programming are the incorporation of functions
and the introduction of message discretion.

As usual in the development of programming systems, the introduction of
new capabilities at one level of the system imposes new requirements at other
levels. In the case of the new features of Cantor 3.0, the introduction of message
discretion raises the specter of violating the guarantee of message consumption. If
a process is waiting for the arrival of a particular message, messages received in the
interim must be buffered. Since the resources of a node are quite limited, physical
space may not be available for the awaited message to be received. Since infinite
queueing is theoretically required, we are investigating engineering solutions that
use the resources of the entire machine, and potentially of secondary memory, to
approximate infinite queues.

In addition to implementing runtime support for new language features, we
are investigating solutions to other problems that became apparent during the
development of the Mosaic runtime system. In this first version, we made simplifying
assumptions to minimize both the size and complexity of the runtime support. Two
of the assumptions that must be seriously addressed in future versions of the runtime
system are: (1) if an available reference value exists for the creation of a new process
on a remote node, then enough resources exist on that node for the new process; and
(2) the code for each process resides on every node. These assumptions are clearly
unrealistic for the types of memory-intensive computations that we seek to perform.
Currently, we are devising and evaluating schemes for process placement that do not
assume available resources on the remote node. We are also devising schemes for
code partitioning that will maximize the amount of memory available for processes,
while not introducing excessive overhead for acquiring necessary copies of process
code.

3.3 The Cosmic Environment and Reactive Kernel

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Seizovic, Wen-King Su

A joint effort with Intel to port the Reactive Kernel to run as the native node
operating system on the iPSC/2 has successfully achieved its first milestone.
Our longer-term goal is to run an enhanced version of RK on a future Intel
multicomputer that is based on the Intel 1860 processor.

The port of the Inner Kernel of RK and of the system-handler layer was
performed in an intensive effort over a two-week period by Jakov Seizovic, RK’s
original author, and was upgraded to include a preliminary user-process handler by
Bill Bain of Intel during the following two weeks. The fine-tuning of the message
performance took another week. This port has shown once again that the modular
structure of RK provides for simple porting and simplifies debugging, especially
in the early phases of the port. This preliminary version of RK outperformed

-6-

the Intel NX operating system by about a factor of two in message latency,
and achieved equivalent message bandwidth. We have subsequently increased the
message bandwidth while providing proper fragmentation and reassembly of long
messages, which increases the fairness of access to the message network. The

completion of this port is expected to be performed principally by Intel within
the next two months.

RK has gotten somewhat ahead of the Cosmic Environment system in its use of

a layered reactive-process structure. A new version of CE has been designed, and
is currently being written.

3.4 Hybrid Distributed Discrete-Event Simulators

Wen-King Su, Chuck Seitz .

Two hybrid distributed simulators have been written, and their performance results
are included in the PhD thesis: “Reactive-Process Programming and Distributed
Discrete-Event Simulation,” [Caltech-CS-TR-89-11].

In a distributed discrete-event simulation, the simulation subject is divided into
a number of smaller elements. The elements are distributed over a multicomputer
or a multiprocessor, and are simulated concurrently. In a conservative simulator,
null messages are necessary for the progress of a circuit of idling elements. In
the framework of the Chandy-Misra-Bryant algorithm, elements are simulated
independently, as if each element is located on a separate node. While this
framework will achieve good performance on a fine-grain multicomputer, the volume
of null messages is an unnecessary burden for a medium-grain multicomputer, in
which many elements share the same node. When nodes are few, the CMB simulator
does worse than a sequential simulator.

The goal of the hybrid simulators is to eliminate intra-node null messages by
combining elements on the same node into a single macro-element. In the hybrid-
1 simulator, macro-elements are simulated internally by a conventional sequential
simulator. Hybrid-1 reduces intra-node messages by eliminating all intra-node null
messages. It also reduces inter-node messages by synchronizing all element outputs
in a macro-element. The result is a simulator that equals a sequential simulator on
a single node and shows a speedup when more nodes are used, regardless of element
placement. However, the amount of speedup is limited because some concurrency
is lost to the strict synchronization. In hybrid-2, macro-elements are simulated by
a combination of CMB and sequential simulators. Elements are constantly moved
between the two modes as they become blocked or unblocked. Since an element can
progress as far as its inputs allow, the hybrid-2 can attain the full CMB speedup
when many nodes are used. However, since element outputs are not synchronized
in each macro-element, hybrid-2 is sensitive to element placement.

-

3.5 CONCISE*

Sven Mattisson, Lena Peterson, Chuck Seitz

The concurrent circuit-simulation program, CONCISE, originally used waveform
relaxation in conjunction with Jacobi iterations. This method gives high
concurrency, but other iterative methods have better convergence performance.
These other methods do not, however, offer the same concurrency as the Jacobi
method. Thus, we have concentrated recently on developing combinational methods
that retain the concurrency properties of the Jacobi iterations while improving
convergence. CONCISE has been enhanced to exploit circuit-node coupling. The
strongly coupled nodes are solved in a block with a direct method; thus, convergence
is improved.

The waveform relaxation method has also been augmented with multicolored
Gauss-Seidel iterations. Normally, Gauss-Seidel iterations rely on the equations
being solved in sequence. However, by coloring the circuit graph it is possible to
find an ordering that gives high concurrency. All equations with one color can be
solved in parallel, and typically only three to five colors are needed for a circuit to
yield high concurrency.

A special version of CONCISE was written to evaluate Jacobian matrix
coefficients concurrently, while using a single-rate integration method for each
subsystem. This version is now about to be incorporated in the standard version.

A plotting program, communicating with CONCISE via messages, has been
developed. This program displays selected waveforms as they are computed.

CONCISE was given a thorough workout over the summer performing
simulations on a 64-node Symult 2010 of 4000-transistor sections of the FMRC2.1
self-timed mesh-routing chips. These studies were part of characterizing the process-
dependence of the FRMC2.1 design.

CONCISE is written in C using the CE/RK functions, and now runs on Sun,

Sequent, Macintosh I (A/UX), Intel iPSC/1, Intel iPSC/2, and Symult Series 2010
computers.

3.6 A C-Based Concurrent Programming Language For Multicomputers
Marcel van der Goot, Alain Martin

We are defining and implementing a concurrent programming language for message-
passing multicomputers. Since the main difference between multicomputers and
sequential machines is the possibility of concurrency, we have concentrated in
our language design on adding concurrency without redefining the complete
computation model. In particular, since most of our programming experience is

* This segment of our research is a joint project with the Applied Electronics
Department of the University of Lund, Sweden.

-8-

with using imperative sequential languages, we have chosen one such language, C,
as the basis for our work. C matches well with our desire to design a language that
is compact but nevertheless useful for writing “real” application programs.

In our model, a computation consists of a set of independently executing
sequential processes, plus a set of message-buffers (channels) connecting pairs of
processes. Processes and channels together form the so-called computation graph,
which can vary dynamically during the computation. A process is a short sequential
(C) program that can exchange data with its environment by sending or receiving
messages. A process typically has about the same size as a function; such a fine
grain size makes the language applicable to a large range of multicomputers.

We finished a preliminary implementation of a somewhat restricted version of
the language earlier this summer. In that implementation, a concurrent program
is compiled into a single UNIX process that is executed on a Sun workstation.
Currently we are working on a compiler for the complete language, which we hope
to have running in December or January.

4. VLSI Design

4.1 Testing of the Asynchronous Microprocessor

Steve Burns, Tony Lee, Dra%en Borkovié, Pieter Hazewindus, Alain Martin

The Asynchronous Microprocessor, described in the previous semiannual technical
report, has since been thoroughly tested. Chips fabricated at a 2pm feature size
functioned as intended over a wide range of power supply voltages, temperatures,
and delays of the external memories. The chips fabricated at 1.6um, while
functioning correctly at certain voltages, temperatures, and delays, failed for many
values of these external parameters. After a detailed analysis, we concluded that
all the high-level transformations were performed correctly. The problem, instead,
occurred in the final phase of the compilation, the transformation from production
rules into networks of CMOS gates. In particular, the values of some isochronic
forks change too slowly, allowing different gates to interpret the digital value
inconsistently. These forks were located and the circuits were modified to correct
the problem. A corrected 1.6um version of the microprocessor is expected back
from MOSIS fabrication on December 1st.

4.2 The Limitations to Delay-Insensitivity in Asynchronous Circuits

Alain Martin

Once it was established that the problem in the 1.6um version of the microprocessor
was caused by a malfunctioning of an isochronic fork for certain values of the
external parameters, the question of whether isochronic forks are necessary needed
to be answered.

An isochronic fork is used to distribute a variable to several points of the circuit
as input of several gates. In the discrete model, it is assumed that the different
copies of the variable have the same values at all times. For this assumption to
be valid, the following timing requirement has to be fulfilled. A change on the
input of a fork causes the different outputs to change asynchronously. However, the
“transition delays” on the different outputs of an isochronic fork must be similar
enough in length that once a change on one of the outputs of the fork has caused

another gate to fire, one may conclude that the changes on all the outputs have
completed.

Since the definition of isochronic forks violates the delay-insensitivity assump-
tion, and since all efforts to design entirely delay-insensitive circuits have been
fruitless, we started to suspect that the class of circuits that are entirely delay-
insensitive could be very limited. Indeed, we have been able to prove that an
entirely delay-insensitive circuit can contain only C-elements, hence settling an im-
portant open question in the theory of asynchronous circuit design, and vindicating
the compromise to delay-insensitivity implied by the use of isochronic forks.

-10-

4.3 Tools for Performance Evaluation of Self-timed Circuits
Steve Burns, Alain Martin

The compilation method has, in the past, been mostly concerned with correctness,
not efficiency. With the design of the microprocessor, high performance has become
a major concern. Two separate analysis tools have been developed in order to
determine the speed at which self-timed circuits operate.

The first tool is a simple event-driven simulator that takes, as input, extracted
circuit layout. Timing analysis is based on the 7-model. Good agreement has been
found between the timing information produced by the simulator and actual results
obtained from the fabricated chips. The simulator itself is quite efficient, even for
large circuits; simulation of a single instruction of the microprocessor takes less than
a second.

The second tool allows the comparison of various methods of handshaking
without actually constructing and then simulating the circuit. The fundamental
sequencing between actions can be determined, in many important cases, by a
static analysis of a high-level description of the program. The necessary analysis
involves solution of a finite linear optimization problem. For small problems, it can
be solved by the enumeration of all the cycles in a so-called “constraint” graph. A
PROLOG program has been constructed that performs this analysis.

4.4 Cache Memory for an Asynchronous Microprocessor
José A. Tierno, Alain Martin

The design of a direct-mapped instruction cache for an asynchronous microprocessor
is underway. The cache is completely self-timed, both the control part and the RAM
array. The objective is to make the design suitable for on-chip implementation as
part of the processor pipeline.

4.5 Self-Timed Circuits in GaAs

José A. Tierno, Alain Martin

Experimentation is being done on new transistor configurations for digital circuits
implemented in Enhancement/Depletion mode MESFET GaAs technology. The
main characteristics of these configurations are increased noise margins, reduced
input load, and slightly faster gate delays than conventional DCFL (direct-
coupled FET logic) and SBFL (super buffered fet logic) technology. Extensive
experimentation has been done using SPICE for simulations, and two chips have
been sent for fabrication to test some basic circuits.

-11-

4.6 Testing Self-Timed Circuits

Pieter Hazewindus, Alain Martin

We are continuing our investigation into the testability of self-timed circuits.
Previously we tried to construct a set of circuit elements with which any program
could be implemented and for which all faults would be testable. This goal seems
unattainable: We have found that — with one exception — for any isochronic fork
there is a corresponding fault that is not testable. As we have shown that most
circuits require isochronic forks, the range of circuits without untestable faults is
very limited. Hence, without additional circuitry or additional scan points, most
circuits will have untestable faults.

To increase the fault coverage it is possible to add a test structure, thus
connecting all state-holding elements in a queue and thereby reducing the problem
of testing a sequential circuit to that of testing a combinational one. Test vectors
are put into the queue, while the results are taken out, similar to scan-type designs
for synchronous circuits. We speculate that with appropriate conditions on the
combinational logic, all faults are testable this way; however, for our current design
style, such a queue would be expensive in area, as the number of state-holding
elements is much larger than the number of latches in a typical synchronous design.
We are investigating ways to reduce the number of state-holding elements in the
queue while maintaining the complete testability.

4.7 Fast Self-Timed Mesh Routing Chips

Chuck Seitz

The FMRC2.1 mesh-routing chips have now been thoroughly characterized by Intel,
and have been shown to operate at a channel rate of 65MB /s. However, testing
at Intel also discovered a failure mode that occurs when several channels operate
concurrently. This failure was traced to collapse of the internal power supply under
these demanding conditions; thus, it is properly a failure of the packaging rather
than of the chip design.

This 132-pin chip devotes the 20 lowest-inductance PGA-package pins to Vdd
and GND, but either a better package or twice as many Vdd and GND pins are
required. Experiments with a number of alternative packages are now underway,

and have involved producing a complete set of test vectors for automatically testing
MRC chips.

The design and layout of two other versions of the FMRC is now underway. One
of these versions is designed to minimize latency by using relatively few internal
FIFO stages. Multicomputer applications benefit from the internal FIFOs, which
reduce blocking contention, but the tradeoff between throughput and latency is
different for multiprocessor applications.

Samples of tested FMRC2.1 chips have been provided in recent months to CMU,

-12-

MCC, and MIT, in addition to those samples provided earlier to Intel Scientific
Computers and Symult Systems.

4.8 Implementing Adaptive Routing in Multicomputer Networks
Mike Pertel, Chuck Seitz

We are investigating those performance enhancements in multicomputer routing
that are achievable through practical adaptive routing strategies. Earlier work
has demonstrated the potential of multipath routing; our current objective is the
realization of that potential. The initial phase of this work is the comparison of
various specific routing algorithms on the basis of low-latency throughput, fault
tolerance, and traffic diffusion. The algorithm found to exhibit the best performance
under detailed network simulation will be implemented as a VLSI circuit to replace
the current Mosaic router.

4.9 Mosaic C Chips

Jakov Seizovic, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry

The full Mosaic element, a 9.0mmx7.4mm chip in 1.2um SCMOS technology,
introduced us to a number of difficulties in the design of chips that exhibit both
high complexity (~700K transistors) and fairly high clock rate (40MHz). The clock
lines cannot be run in minimum-width metal without compromising performance.
In this design, the memory contributes the largest part of the clock load, and the
combination of capacitive load and line resistance require that the clock lines be
run across the backbone of the chip in ~10um-wide metal. The critical clock line
happened to be ¢2, which is distributed from the clock driver to the memory section
in the following pattern:

PHI2-
Processor+router | I ROM
D | |
____________ / wide _____________

COL(0)-=-=-=-=--- COL(1)=-==--==-- COL(2)--=-===-=-- COL(3)

o o (I I
bank (0) bank(4) Pl Pl

I I 1] I I
bank(1) bank(5) I I | | 7700 lambda

I oo I I | | high
bank(2) bank(6) 1 I

I 1 O I (I
bank(3) bank (7) I I 1

T T > Cmmmmmmmee oo > Kmmmmmmeeemeeo >
3500 lambda 3500 lambda 3500 lambda

-13-

Analytical and simulation results for this situation were nearly identical. For
simulation simplicity, the set of three, parallel, minimum-width wires in each vertical
bundle was treated as one wide wire. Only the left half of the distribution network
was simulated with SPICE. The result of these simulations confirmed the following
area-energy-period optimums: (1) a clock driver of 700sq n-channel + 1050sq p-
channel per half of the RAM per phase, and (2) 15\-wide distribution wires across
the top for each phase.

The memory and router sections of the Mosaic were fabricated and tested more
than a year ago. To test the remaining parts of the full Mosaic element and
their ability to work together, the processor, packet interface, router, and clock
driver were integrated onto a “memoryless Mosaic” test chip that was sent to
MOSIS on August 10th. This test chip was a major milestone for us. A number
of improvements in the processor instruction set and an increase in the channel
bandwidth created some design imbalances that required a substantial amount of
rethinking of the memory arbitration and packet interface.

The maximum combined data bandwidth of the receive and send parts of the
packet interface (PI) is equal to 50% of the total memory bandwidth, which is one
16-bit read or write each clock period (25ns). The original design specifications for
the PI included the assumption that there would be enough spare memory cycles
so that the PI would not need to request access to the data bus; it would instead
use otherwise unused cycles for message transfer from/into the network.

The increased efficiency of the processor microcode invalidated this assumption,
and the design of the memory-bus arbitration unit and the PI had to be modified
to comply with the new specifications. Eight-word buffers were added between the
memory and the sending part of the packet interface, and between the receiving
part of the packet interface and the memory. The signals generated by the sender
and the receiver part of PI to request access to the memory bus include “hysteresis”:
Depending on the amount of space available in the buffers, the PI may either steal
unused cycles or request exclusive use of the memory. This scheme allows the data
transfer between memory and buffers to occur in bursts, rather than imposing the
bus arbitration overhead on every PI memory access.

The new design provides for the data transfer from/into the network at the
full network bandwidth regardless of the instruction sequence being executed. This
feature was achieved with a fairly modest increase in complexity: an increase in
buffering space from two to sixteen words, and an additional state machine to
handle the bus-request logic.

We are currently in the process of testing the memoryless Mosaic chips that
were returned from MOSIS fabrication on October 12th. So far, the chips appear to
function correctly. All processor instructions and router functions operate correctly,
but there is evidently a slow path in the router. We are investigating this problem.

-14-

